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Purpose. The heats of reaction between the enantiomers and race-
mates of ibuprofen and naproxen and human serum albumin (HSA)
are to be measured with and without the addition of octanoic acid.
The effects of octanoic acid on the free energies of interaction be-
tween the drugs and HSA is to be determined and compared to that
estimated from theoretical equations.

Methods. The heats of reaction have been measured directly by flow
microcalorimetry.

Results. The data showed that octanoic acid lowered the 1:1 binding
constants for all the drug-HSA interactions investigated. The effect
of octanoic acid was greater on the R than on the S forms of the
drugs as shown by the differences in free energies of interaction in
the presence and absence of octanoic acid.

Conclusions. The increased free energy differences for the binding of
the enantiomers of both drugs to HSA in the presence of octanoic
acid is closer to the value deemed to be necessary for the separation
of enantiomers by Davenkov, and shows the importance of the ad-
dition of octanoic acid to the mobile phase in the separation of these
enantiomers on immobilized albumin columns.

KEY WORDS: microcalorimetry; enantiomers; binding; albumin;
octanoic acid; ibuprofen; naproxen.

Human serum albumin has two major binding sites for
drugs (1-6). Warfarin can be regarded as a marker for site I
and benzodiazepines for Site II. The coumarins, sulfon-
amides and the phenylbutazone all bind to site I. The tryp-
tophan residue—Trp 214 in human serum albumin (HSA)
and Lys 199 are both located in this site (7,11). Slight enan-
tiomeric selectivity has been observed for the binding of the
enantiomers of warfarin to site I (12, 18), the S enantiomer
having a greater binding constant than the R isomer. The S
enantiomers of phenprocoumon (19) and acenocoumarol (20)
also bind to albumin more strongly than the R isomers.
Drugs binding to site II, frequently called the diazepam site,
include the benzodiazepines, tryptophan, ibuprofen,
naproxen octanoic acid, clofibric acid and iopanic acid (22).
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This binding site is not as well defined as site I and seems to
involve a larger area. Fragments A and C of the cyanogen
bromide fragment of HSA (residues 124-585) contain the
area of site II (23, 24). His 146, Lys 194 in fragment C (25),
and the highly reactive tyrosine residue of fragment A-Tyr
411 (2) are all thought to play an active role in any binding to
site II. There are many studies of stereospecific binding of
drugs to this binding site, including tryptophan (26), ox-
azepam hemisuccinate (21), other benzodiazepines (27-29)
and non steroidal antiinflammatories including ketoprofen
(30) ibuprofen (31), pirprofen (32,33) and etodolac (34). It is
therefore not surprising that immobilized albumins (human
and bovine) can be used as chiral stationary phases in liquid
chromatography (13,35) for the separation of appropriate en-
antiomers. Medium chain fatty acids, including octanoic acid
(3,36,37) have been reported to bind to site II and so the
addition of octanoic acid to a mixture of drug and albumin is
likely to lower the binding constant for the drug albumin
interaction. This competition whether direct or indirect, can
be exploited in chromatography, because the addition of oc-
tanoic acid to the mobile phase with immobilized albumins
as the stationary phase, can reduce the retention times of the
enantiomers and alter the capacity factors (13,35). Davankov
in 1980 (38) had predicted that, at room temperature, the
difference in free energies of interaction of the chiral selector
with the two enantiomers in a thermodynamically controlled
equilibrium, must be at least 11 k J/mol to observe any en-
antioselective action. As microcalorimetry has been shown
to be a useful tool in obtaining the thermodynamic parame-
ters of drug—albumin interactions (39), it was decided to
investigate the binding of the enantiomers of naproxen and
ibuprofen to HSA, and also the effect of octanoic acid on the
binding parameters by this technique.

EXPERIMENTAL

Materials

Essentially fatty acid free human serum albumin (lot no.
42H9313 prepared from Fraction V albumin) and octanoic
acid were obtained from Sigma Chemicals (St. Louis, Mis-
souri) and used without further treatment. S(+) and R(-)
naproxen were gifts from Syntex Research, Palo Alto, Cal-
ifornia. S(+) ibuprofen was a gift from Sepracor, Inc., Marl-
borough, Massachusetts and R(-) ibuprofen was a gift from
Research Biochemicals Incorporated, Natick, Massachu-
setts. All the gift chemicals, and diazepam, which was kindly
supplied by Dr. Richard E. Tessel, Department of Pharma-
cology and Toxicology, University of Kansas, Missouri,
were used as received. All other chemicals were of analytical
grade. Deionized water, purified in a Milli-Q Water System
(Millipore Corp., Bedford, Massachusetts) was used to pre-
pare the sodium phosphate buffers which were used through-
out. A Pierce BCA R protein assay kit (Pierce, Rockford,
Illinois) was used to determine the human serum albumin
concentrations in all the experiments.

Method

Measurements were made in the LKB flow microcalo-
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Fig. 1. Heat flux of the binding of ibuprofen enantiomers to human
serum albumin as a function of ligand concentration. (O, 0J) S-ibu-
profen, (@, W) R-ibuprofen. Curves were generated by fitting the
experimental data to equation (1) using Sigma plot and assuming a
1:1 stoichiometry. All data were collected in 0.1 M phosphate buffer,
pH 7.4 at 25° C, with the protein concentration set at 300 uM.

rimeter model 2107-020 (LKB Produkter AB, Bromma, Swe-
den). The entire calorimeter was submerged in a water bath
maintained at 25°C by Tronac PTC-40 temperature controller
(Tronac Inc., Orem, Utah). A LKB Microperpex Dual Peri-
staltic pump, Model 2132 (LKB Produkter AB, Bromma,
Sweden) was used to pump the protein and ligand solutions
separately into the calorimeter. The combined flow rate was
set at 25 ml hr ~!, so that the residence time in the mixing cell
was approximately 1 minute. This was many orders of mag-
nitude greater than the time for attainment of equilibrium
between small molecules and proteins. The electrical heat of
mixing was then amplified by a Keithley 150B Microvolt
Ammeter (Keithley Instruments Inc. Cleveland, Ohio) and
recorded on a chart recorder.

Before each run the calorimeter was electrically cali-
brated—the pen response to a known amount of electrically
induced heat was recorded with buffer flowing through the
mixing cell. Then, when the actual experiment was per-
formed with the protein and ligand solutions, the pen re-
sponse to the heat of mixing was compared to the electrical

. calibration performed previously. The heat of mixing of HCI
and NaOH solutions was measured periodically to check the
calibration. The measured heat of mixing, is a sum of the
heat of reaction between the drug and protein and the heats
of dilution of the drug solution and protein solution.

Heat (Drug-protein
interaction)
Heat (Dilution of
HSA solution)

Heat (Dilution of

Heateasured) = drug solution)
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Separate control experiments were therefore performed
to determine the heats of dilution of drug and protein solu-
tions (by mixing drug or protein with buffer) and these were
subtracted from the total measured heat to yield the actual
heat of mixing. All the experiments were conducted at 25°C
in 0.1 M phosphate buffer, pH 7.4. The protein concentration
was maintained constant at 300 pM. To study the effect of
octanoic acid on the binding of non-steroidal anti inflamma-
tory drugs, the acid was added to the protein solution. In all
experiments, the octanoic acid concentration was half the
albumin concentration. This solution was then titrated
against the ligand solutions and new binding constants were
obtained.

The calorimetric data was fitted using Sigma plot 4.14
(Jandel Scientific, San Francisco, California) software pack-
age on a Macintosh SE (Apple computer, Inc., Cupertino,
California) personal computer. Stateworks™" a statistical
software package from Data Metrics, Inc. (Heyden and Son,
Inc., Philadelphia, Pennsylvania) was used for any statistical
analysis and a value of p=<0.05 was considered significant in
all the studies.

RESULTS

The results are obtained as a microvolt output from the
microcalorimeter as a function of ligand concentrations at
the fixed concentration of 300p.M HSA. The titration curves,
so obtained for the enantiomers of ibuprofen are shown in
figure 1, of the enantiomers of naproxen in figure 2, and of
octanoic acid in figure 3. The effect of a fixed concentration,
150p.M octanoic acid, cn the binding of ibuprofen enantio-
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Fig. 2. Heat flux of the binding of naproxen enantiomers to human
serum albumin as a function of ligand concentration. (O, O)
S-naproxen, (@, B) R-naproxen. Curves were generated by fitting
the experimental data to equation (1) using Sigma plot and assuming
a 1:1 stoichiometry. All data were collected in 0.1 M phosphate
buffer, pH 7.4 at 25° C, with the protein concentration set at 300 pM.
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Fig. 3. Heat flux of the binding of octanoic acid to human serum
albumin as a function of ligand concentration. (O, O) Octanoic acid.
Curves were generated by fitting the experimental data to equation
(1) using Sigma plot and assuming a 1:1 stoichiometry. All data were
collected in 0.1 M phosphate buffer, pH 7.4 at 25° C, with the protein
concentration set at 300 uM.
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Fig. 4. Heat flux of the binding of ibuprofen enantiomers to human
serum albumin in the presence of octanoic acid, as a function of
ligand concentration. (O, O) S-ibuprofen, (@, W) R-ibuprofen.
Curves were generated by fitting the experimental data to equation
(1) using Sigma plot and assuming a 1:1 stoichiometry. All data were
collected in 0.1 M phosphate buffer, pH 7.4 at 25° C, with the protein
concentration set at 300 uM, the octanoic acid concentration being
150 pM.
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Fig. 5. Heat flux of the binding of naproxen enantiomers to human
serum albumin in the presence of octanoic acid, as a function of
ligand concentration. (O, O0) S-naproxen, (@, M) R-naproxen.
Curves were generated by fitting the experimental data to equation
(1) using Sigma plot and assuming a 1:1 stoichiometry. All data were
collected in 0.1 M phosphate buffer, pH 7.4 at 25° C, with the protein
concentration set at 300 uM, the octanoic acid concentration being

300

150. pM.

mers is shown in figure 4 and on the naproxen enantiomers
in figure 5. These curves can be converted to the usual ther-
modynamic parameters assuming binding occurs at only one
binding site (ie 1:1 interaction), from the following equations
(40)

[

K@= -9 “)
¢ = bound drug
a = initial concentration of drug
b = initial concentration of HSA als given

¢ rearranges to a quadratic, however C is also given at any
drug concentration by

[TA%
c =

VViax

03]

where nV is the measured heat flux and pV,,,, is the heat
flux associated with the formation of one mole of drug-HSA
complex. Eliminating C gives

L+ . Kda+ b2 + 1+
K@+ % >k + b) — 4K%ab
2K

Y = nVimax
3)

This equation has two unknowns, in p. V., and K. An
iterative least squares technique was used to fit the experi-
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Table I. Thermodynamic Parameters® of Binding Interaction of NSAID Enantiomers to Human Serum Albumin—as Determined by Mi-

crocalorimetry
Ligand AH (kJ/mol) KM™Y Ag® (kJ/mol) AS° (J/mol °K)
S-Ibuprofen —15.8 £ 0.1 4.4+ 0.3 x 10° —322 %02 51
R-Ibuprofen —-11.5 = 0.4 2.9+ 0.9 x 10° —-31.1 £ 0.8 66 =3
Racemic Ibuprofen —16.1 = 1.2 1.6 £ 0.3 x 10° -29.7 = 0.5 46 = 4
S-Naproxen -26.3 0.7 1.5+ 0.5 x 10° -295 0.8 11 =4
R-Naproxen —26.6 = 0.4 1.0 £ 0.2 x 10° ~28.4 + 0.5 6=x2
Racemic Naproxen -27.2 £ 0.1 09 0.1 x 10° —-283+03 4 + 1

% Each value in the table represents mean * standard error from two separate sets of measurements.

mental data to the negative root. The heat of reaction be-
tween drug and HSA (AH) was calculated by the method
described by Hardee et al (40).

AH = pVipax - - X .
1
total . . flow . . rate

. calibration . . constant . . x . .

@

The calibration constant relates volts to watts and is ob-
tained electrically (40). AG° and AS° are obtained from the
derived K and AH values in the usual way. The values for the
enantiomers and racemates are shown in Table 1. The value
of K obtained for octanoic acid was 1.7 X 10°M !, This is an
order of magnitude lower than that of the drugs.

The effect of the octanoic acid on the thermodynamic
parameters of the binding of the enantiomers of naproxen
and ibuprofen is shown in Table II. Table III compares the
binding constant and free energies of the enantiomers in the
presence and absence of octanoic acid, the 3AG’s are the
differences in free energy of binding of the two enantiomers,
in the presence and absence of octanoic acid.

DISCUSSION

Figures 1-3, show the expected binding curves following
evolution of heat. The upper limit of drug concentration was
limited by concern that secondary binding sites would be-
come involved at higher drug to albumin ratios. The S forms
of both drugs bind more strongly than the R form with the
racemic form binding less tightly. That there is some ste-
reospecificity in the binding of the enantiomers suggests that
the enantiomers either occupy a slightly different area of the
site IT with considerable overlapping, or that the two enan-
tiomers cause a different allosteric effect on the protein. The
enantiomers act as two drugs competing for the same binding
area on albumin. The naproxen drugs evolve more heat on

reaction with HSA, entropy contributing more to the reac-
tion in the case of the ibuprofens. The increased area of the
naphthyl! rings seem to have reduced the entropy of interac-
tion, although this may also be related to the different effects
of the drugs on the conformation of albumin at pH 7.4
(41,42). It is apparent that hydrogen bonds between drug-
water HSA-water, water-water, complex-water, drug-HSA
make significant contributions to the thermodynamics of the
total process of complex formation. The binding constant of
1.7 x 10° M ~ ! obtained for the octanoic-HSA interaction can
be compared to the values of 3.36 x 10* M~ ! (43) and 62.5 x
10* M~ (44) in the literature.

Table II shows the binding constants of the enantiomers
of both drugs were greatly reduced in the presence of oc-
tanoic acid, the effect on the naproxens being greater than on
the ibuprofens. In both cases the octanoic acid has a bigger
effect on the R than the S form of the drugs. It is unlikely that
the effect of the octanoic acid is by direct competition for the
binding site in the large area of site II, more likely, the two
ligands bind to overlapping areas and that a change in shape
of the binding site is induced by the octanoic acid. It is
interesting to note that the binding of the naproxens pro-
ceeded with a significant decrease in entropy. Table III
shows that the presence of octanoic acid clearly increases
the discrimination by HSA between the R and S enantio-
mers, the ratio of binding constants (§/R) for ibuprofen in-
creases from 1.5 to 3.4, and for naproxen from 1.5 to 3.0 in
the presence of octanoic acid. This is also shown in the
increase in 3AG’s, note that these values are far from the
11kJ mole ~ ! at 25°C predicted by Davankov for the separa-
tion of enantiomers. His value can be obtained by accepting
a one percent contamination by the other enantiomer and so
3AG=RTIn 99/1 = -11.4 kJmole ! at 25°C. In 1989, Dav-
ankov (45) predicted that chromatography would reduce
3AG values to near 0.3 kJ mole ~! for chiral selectivity. This
value can be obtained from the usual resolution equation (41)
namely

Table II. Thermodynamic Parameters® of the Binding Interaction of NSAID Enantiomers to Human Serum Albumin in the Presence of
Octanoic Acid—as Determined by Microcalorimetry

Ligand AH (kJ/mol) KM™H AG® (kJ/mol) AS° (J/mol °K)
S-Ibuprofen -14.1 = 0.8 6.2 + 0.4 x 10* —-273x0.2 44 3
R-Ibuprofen -13.7 £ 0.2 1.8 = 0.1 x 10* —-243 + 0.1 361
S-Naproxen -32.6 £0.2 1.8 = 0.1 x 10* -243 + 0.1 -28=x1
R-Naproxen ~341* 1.4 6.3 0.3 x 10° -21.7 = 0.1 -42 5

2 Each value in the table represents mean * standard error from two separate sets of measurements.
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Table III. Effect of Octanoic Acid on the Binding Interaction Between NSAID Enantiomers and Human Serum Albumin—as Determined
by Microcalorimetry

3G ldAG?) AG™ ldAGe]
Ligand KM™Y KeM™Y (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)
S-Ibuprofen 4.4 x 10° 6.2 x 10° -32.2 -27.4
1.1 3.1
R-Ibuprofen 2.9 x 10° 1.8 x 10° -31.1 -243
S-Naproxen 1.5 x 10° 1.8 x 10* -29.5 -243
1.1 2.6
R-Naproxen 1.0 x 10° 0.6 x 10° —28.4 -21.7

2 Indicates values calculated in the presence of octanoic acid.

Rs = 0.25\/N —k— (@min — 1) )

kK +1
where 8 min = K,/K; = smallest difference to allow sepa-
ration, and the Ks are the binding constant for the enantio-
mer—HSA interaction, and where for example N the num-
ber of theoretical plates is 5000 and the k' the capacity factor
is for example 5. If the resolution Rs, is taken as 1.0, to give
a partial but detectable separation, then a value of 3 min of
1.101 is obtained. Substitution, in the 8AG = -RTln « gives a
3AG value of -0.24 kJ mole ~*, close to Davankov’s estimate
of near 0.3 kJmole ~'. Differences in the free energies of
interaction in the presence of octanoic acid between drug
and HSA for the R and S ibuprofen and R and S naproxen are
3.1 and 2.6 respectively as shown in Table III; clearly above
the values deemed necessary by Davankov (45). The above
data suggests that the addition of octanoic acid to the mobile
phase for the separation of the enantiomers of ibuprofen and
naproxen using an immobilized HSA column can be ex-
pected to reduce the retention time because the binding con-
stants between the drugs and HSA are lowered and to en-
hance the separation because the differences in free energies
of interaction between the two enantiomers and HSA is in-
creased.
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